Niveau : première générale en introduction du cours sur le second degré ou en prolongement du cours sur les fonctions. TP avec le logiciel Geoplan ou GeoGebra.

Nombre d'or

Lien avec Les maths au quotidien : thème Le nombre d'or.

I-Introduction

On retrouve une définition du nombre d'or dans les travaux de *Vitruve*, architecte romain au I^{er} siècle avant notre ère. Sur un segment [AB] est placé un point C délimitant deux segments [AC] et [CB]. Le nombre d'or est déterminé par une proportion :

« Il y a de la petite partie à la grande, le même rapport que de la grande au tout ».

Le nombre d'or, noté ϕ , est l'inverse de ce rapport.

Considérons un segment [AB] et un point C sur ce segment :

- 1. Écrire une égalité traduisant la phrase de Vitruve.
- **2.** Les deux quantités mises en jeu dans l'égalité précédente dépendent-elles de l'unité de longueur choisie ?
- 3. Lorsque cette égalité est vérifiée, comment est défini le nombre ϕ ?

II- Utilisation d'un logiciel comme GeoplanGeospace ou GeoGebra.

Considérons que le segment [AB] mesure une unité de longueur. On pourra afficher le repère du logiciel.

A- Première méthode pour obtenir une valeur approchée de φ avec le logiciel.

- 1. Construire un segment [AB] de longueur 1.
- 2. Construire un point libre C sur le segment [AB].
- 3. Créer les nombres $r_1 = \frac{AC}{CB}$ et $r_2 = \frac{AB}{AC}$ et afficher leurs valeurs (3 décimales).
- **4. a.** En observant les valeurs de r_1 et r_2 affichées, déplacer le point C (avec la souris), jusqu'à obtenir l' « égalité » des deux rapports. Pour obtenir plus de précision, il peut être nécessaire de « piloter » le point C au clavier en étant attentif au pas du déplacement.
 - **b.** Combien de positions du point C conviennent ?
 - **c.** Donner une valeur approchée de la valeur commune φ de r_1 et r_2 .

B- Seconde méthode pour obtenir une valeur approchée de ϕ avec le logiciel.

On va représenter l'évolution de r_1 en fonction de AC et l'évolution de r_2 en fonction de AC dans le même repère, pour retrouver une valeur approchée de φ . On garde les constructions logiciel de la partie A.

- **1.** Créer *x* longueur du segment [AC] (l'appeler *x*1 si vous utilisez GeoGebra...)
- **2.** Créer les points M_1 et M_2 de coordonnées respectives (x; r_1) et (x; r_2) dans le repère du plan.
- 3. Sélectionner la trace des points M_1 et M_2 et déplacer le point C avec le clavier.

Notons
$$x = AC$$
 et posons $r_1(x) = \frac{AC}{CB}$ et $r_2(x) = \frac{AB}{AC}$ (avec $x > 0$).

4. Écrire $r_1(x)$ et $r_2(x)$ en fonction de x.

5. Sur le même graphique que précédemment, tracer les courbes représentatives de r_1 et r_2 et vérifier que les points M_1 et M_2 décrivent respectivement chacune de ces courbes.

6. Par lecture graphique, donner une valeur approchée de φ .

On veut trouver x positif tel que $\frac{x}{1-x} = \frac{1}{x}$ (1).

- 1. Montrer que l'équation (1) est équivalente à l'équation $x = \frac{1-x}{x}$ soit $x = \frac{1}{x} 1$ (2).
- 2. Rappelons que si $\frac{x}{1-x} = \frac{1}{x}$ alors $\varphi = \frac{1}{x}$.

Montrer que l'équation (2) est équivalente à l'équation $\varphi^2 - \varphi - 1 = 0$.

- **3. a.** Tracer avec le logiciel la courbe C d'équation cartésienne y = f (x) où f (x) = x² − x − 1. **b.** Comment appelle-t-on une courbe comme la courbe C?
- **4.** a. À l'aide du graphique, donner un encadrement de φ par deux entiers consécutifs.
 - **b.** À l'aide de la calculatrice et d'un algorithme de dichotomie, déterminer une valeur approchée à 10^{-3} près de φ .

Remarque : on obtient facilement cette valeur approchée directement avec GeoGebra, en appliquant des zooms successifs sur la courbe au bon endroit...

III- Obtention de la valeur exacte de ϕ par le calcul.

Rappelons que φ est une solution **positive** de l'équation $x^2 - x - 1 = 0$

- 1. Montrer que pour tout réel x, $x^2 x 1 = \left(x \frac{1}{2}\right)^2 \left(\frac{\sqrt{5}}{2}\right)^2$.
- **2.** En déduire une factorisation de $x^2 x 1$.
- **3.** Résoudre sur \mathbf{v} l'équation $x^2 x 1 = 0$.
- 4. En déduire la valeur exacte du nombre d'or φ .

AIDE GEOPLAN

Tâche	aide
Créer un objet (point, segment, quantité	Menu « Créer ».
numérique, affichage, courbe représentative	
d'une fonction).	
Déplacer au clavier un point ou faire varier une	Menu « Piloter ». Utiliser les touches \rightarrow et \leftarrow du
quantité numérique.	clavier.
Choisir l'incrémentation lors d'un pilotage.	Menu « Piloter », « Modifier paramètres de pilotage
	au clavier » ou touches « + » et « – ».
Sélectionner une trace.	Menu « Afficher » puis « Sélection trace ».
Faire un zoom.	Voir les icônes du menu.

AIDE GEOGEBRA

Tâche	aide
Créer un objet (point, segment).	Icônes du menu déroulant.
Calculer la longueur <i>l</i> du segment [AB].	l = Distance[A,B] dans la barre de saisie, en bas.
Piloter un objet (point).	Cliquer gauche sur l'objet avec la souris et piloter
	avec les touches \rightarrow et \leftarrow du clavier.
Choisir l'incrémentation lors d'un pilotage.	Cliquer droit sur l'objet avec la souris puis
	« Propriété », « Algèbre », « Incrément ».
Choisir le nombre de décimales d'un affichage.	Menu « Options » puis « Arrondi ».
Créer un point M de coordonnées cartésiennes	M = (x, y) dans la barre de saisie.
(x ; y).	
Activer la trace d'un point.	Clic droit sur le point en question.
Tracer la courbe représentative d'une fonction <i>f</i> .	Taper « y = expression de $f(x)$ » dans la barre de
	saisie.
Faire un zoom.	Roulette de la souris.